Serveur d'exploration sur la rouille du peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Contingency rules for pathogen competition and antagonism in a genetically based, plant defense hierarchy.

Identifieur interne : 000011 ( Main/Exploration ); précédent : 000010; suivant : 000012

Contingency rules for pathogen competition and antagonism in a genetically based, plant defense hierarchy.

Auteurs : Posy E. Busby ; Gregory Crutsinger ; Matthew Barbour ; George Newcombe

Source :

RBID : pubmed:31380021

Abstract

Plant defense against pathogens includes a range of mechanisms, including, but not limited to, genetic resistance, pathogen-antagonizing endophytes, and pathogen competitors. The relative importance of each mechanism can be expressed in a hierarchical view of defense. Several recent studies have shown that pathogen antagonism is inconsistently expressed within the plant defense hierarchy. Our hypothesis is that the hierarchy is governed by contingency rules that determine when and where antagonists reduce plant disease severity.Here, we investigated whether pathogen competition influences pathogen antagonism using Populus as a model system. In three independent field experiments, we asked whether competition for leaf mesophyll cells between a Melampsora rust pathogen and a microscopic, eriophyid mite affects rust pathogen antagonism by fungal leaf endophytes. The rust pathogen has an annual, phenological disadvantage in competition with the mite because the rust pathogen must infect its secondary host in spring before infecting Populus. We varied mite-rust competition by utilizing Populus genotypes characterized by differential genetic resistance to the two organisms. We inoculated plants with endophytes and allowed mites and rust to infect plants naturally.Two contingency rules emerged from the three field experiments: (a) Pathogen antagonism by endophytes can be preempted by host genes for resistance that suppress pathogen development, and (b) pathogen antagonism by endophytes can secondarily be preempted by competitive exclusion of the rust by the mite. Synthesis: Our results point to a Populus defense hierarchy with resistance genes on top, followed by pathogen competition, and finally pathogen antagonism by endophytes. We expect these rules will help to explain the variation in pathogen antagonism that is currently attributed to context dependency.

DOI: 10.1002/ece3.5253
PubMed: 31380021
PubMed Central: PMC6662256


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Contingency rules for pathogen competition and antagonism in a genetically based, plant defense hierarchy.</title>
<author>
<name sortKey="Busby, Posy E" sort="Busby, Posy E" uniqKey="Busby P" first="Posy E" last="Busby">Posy E. Busby</name>
<affiliation>
<nlm:affiliation>Botany and Plant Pathology Department Oregon State University Corvallis Oregon.</nlm:affiliation>
<wicri:noCountry code="no comma">Botany and Plant Pathology Department Oregon State University Corvallis Oregon.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Crutsinger, Gregory" sort="Crutsinger, Gregory" uniqKey="Crutsinger G" first="Gregory" last="Crutsinger">Gregory Crutsinger</name>
<affiliation>
<nlm:affiliation>Department of Zoology University of British Columbia Vancouver British Columbia.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Zoology University of British Columbia Vancouver British Columbia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Barbour, Matthew" sort="Barbour, Matthew" uniqKey="Barbour M" first="Matthew" last="Barbour">Matthew Barbour</name>
<affiliation>
<nlm:affiliation>Department of Zoology University of British Columbia Vancouver British Columbia.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Zoology University of British Columbia Vancouver British Columbia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Newcombe, George" sort="Newcombe, George" uniqKey="Newcombe G" first="George" last="Newcombe">George Newcombe</name>
<affiliation>
<nlm:affiliation>College of Natural Resources University of Idaho Moscow Idaho.</nlm:affiliation>
<wicri:noCountry code="no comma">College of Natural Resources University of Idaho Moscow Idaho.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31380021</idno>
<idno type="pmid">31380021</idno>
<idno type="doi">10.1002/ece3.5253</idno>
<idno type="pmc">PMC6662256</idno>
<idno type="wicri:Area/Main/Corpus">000007</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000007</idno>
<idno type="wicri:Area/Main/Curation">000007</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000007</idno>
<idno type="wicri:Area/Main/Exploration">000007</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Contingency rules for pathogen competition and antagonism in a genetically based, plant defense hierarchy.</title>
<author>
<name sortKey="Busby, Posy E" sort="Busby, Posy E" uniqKey="Busby P" first="Posy E" last="Busby">Posy E. Busby</name>
<affiliation>
<nlm:affiliation>Botany and Plant Pathology Department Oregon State University Corvallis Oregon.</nlm:affiliation>
<wicri:noCountry code="no comma">Botany and Plant Pathology Department Oregon State University Corvallis Oregon.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Crutsinger, Gregory" sort="Crutsinger, Gregory" uniqKey="Crutsinger G" first="Gregory" last="Crutsinger">Gregory Crutsinger</name>
<affiliation>
<nlm:affiliation>Department of Zoology University of British Columbia Vancouver British Columbia.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Zoology University of British Columbia Vancouver British Columbia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Barbour, Matthew" sort="Barbour, Matthew" uniqKey="Barbour M" first="Matthew" last="Barbour">Matthew Barbour</name>
<affiliation>
<nlm:affiliation>Department of Zoology University of British Columbia Vancouver British Columbia.</nlm:affiliation>
<wicri:noCountry code="no comma">Department of Zoology University of British Columbia Vancouver British Columbia.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Newcombe, George" sort="Newcombe, George" uniqKey="Newcombe G" first="George" last="Newcombe">George Newcombe</name>
<affiliation>
<nlm:affiliation>College of Natural Resources University of Idaho Moscow Idaho.</nlm:affiliation>
<wicri:noCountry code="no comma">College of Natural Resources University of Idaho Moscow Idaho.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Ecology and evolution</title>
<idno type="ISSN">2045-7758</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant defense against pathogens includes a range of mechanisms, including, but not limited to, genetic resistance, pathogen-antagonizing endophytes, and pathogen competitors. The relative importance of each mechanism can be expressed in a hierarchical view of defense. Several recent studies have shown that pathogen antagonism is inconsistently expressed within the plant defense hierarchy. Our hypothesis is that the hierarchy is governed by contingency rules that determine when and where antagonists reduce plant disease severity.Here, we investigated whether pathogen competition influences pathogen antagonism using
<i>Populus</i>
as a model system. In three independent field experiments, we asked whether competition for leaf mesophyll cells between a
<i>Melampsora</i>
rust pathogen and a microscopic, eriophyid mite affects rust pathogen antagonism by fungal leaf endophytes. The rust pathogen has an annual, phenological disadvantage in competition with the mite because the rust pathogen must infect its secondary host in spring before infecting
<i>Populus</i>
. We varied mite-rust competition by utilizing
<i>Populus</i>
genotypes characterized by differential genetic resistance to the two organisms. We inoculated plants with endophytes and allowed mites and rust to infect plants naturally.Two contingency rules emerged from the three field experiments: (a) Pathogen antagonism by endophytes can be preempted by host genes for resistance that suppress pathogen development, and (b) pathogen antagonism by endophytes can secondarily be preempted by competitive exclusion of the rust by the mite.
<i>Synthesis</i>
: Our results point to a
<i>Populus</i>
defense hierarchy with resistance genes on top, followed by pathogen competition, and finally pathogen antagonism by endophytes. We expect these rules will help to explain the variation in pathogen antagonism that is currently attributed to context dependency.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31380021</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2045-7758</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Ecology and evolution</Title>
<ISOAbbreviation>Ecol Evol</ISOAbbreviation>
</Journal>
<ArticleTitle>Contingency rules for pathogen competition and antagonism in a genetically based, plant defense hierarchy.</ArticleTitle>
<Pagination>
<MedlinePgn>6860-6868</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ece3.5253</ELocationID>
<Abstract>
<AbstractText>Plant defense against pathogens includes a range of mechanisms, including, but not limited to, genetic resistance, pathogen-antagonizing endophytes, and pathogen competitors. The relative importance of each mechanism can be expressed in a hierarchical view of defense. Several recent studies have shown that pathogen antagonism is inconsistently expressed within the plant defense hierarchy. Our hypothesis is that the hierarchy is governed by contingency rules that determine when and where antagonists reduce plant disease severity.Here, we investigated whether pathogen competition influences pathogen antagonism using
<i>Populus</i>
as a model system. In three independent field experiments, we asked whether competition for leaf mesophyll cells between a
<i>Melampsora</i>
rust pathogen and a microscopic, eriophyid mite affects rust pathogen antagonism by fungal leaf endophytes. The rust pathogen has an annual, phenological disadvantage in competition with the mite because the rust pathogen must infect its secondary host in spring before infecting
<i>Populus</i>
. We varied mite-rust competition by utilizing
<i>Populus</i>
genotypes characterized by differential genetic resistance to the two organisms. We inoculated plants with endophytes and allowed mites and rust to infect plants naturally.Two contingency rules emerged from the three field experiments: (a) Pathogen antagonism by endophytes can be preempted by host genes for resistance that suppress pathogen development, and (b) pathogen antagonism by endophytes can secondarily be preempted by competitive exclusion of the rust by the mite.
<i>Synthesis</i>
: Our results point to a
<i>Populus</i>
defense hierarchy with resistance genes on top, followed by pathogen competition, and finally pathogen antagonism by endophytes. We expect these rules will help to explain the variation in pathogen antagonism that is currently attributed to context dependency.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Busby</LastName>
<ForeName>Posy E</ForeName>
<Initials>PE</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-2837-9820</Identifier>
<AffiliationInfo>
<Affiliation>Botany and Plant Pathology Department Oregon State University Corvallis Oregon.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crutsinger</LastName>
<ForeName>Gregory</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Zoology University of British Columbia Vancouver British Columbia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Barbour</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Zoology University of British Columbia Vancouver British Columbia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Newcombe</LastName>
<ForeName>George</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>College of Natural Resources University of Idaho Moscow Idaho.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>Dryad</DataBankName>
<AccessionNumberList>
<AccessionNumber>10.5061/dryad.3t5602f</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ecol Evol</MedlineTA>
<NlmUniqueID>101566408</NlmUniqueID>
<ISSNLinking>2045-7758</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cladosporium</Keyword>
<Keyword MajorTopicYN="N">Melampsora</Keyword>
<Keyword MajorTopicYN="N">Populus trichocarpa</Keyword>
<Keyword MajorTopicYN="N">Trichoderma</Keyword>
<Keyword MajorTopicYN="N">eriophyid mite</Keyword>
<Keyword MajorTopicYN="N">fungal leaf endophyte</Keyword>
<Keyword MajorTopicYN="N">genetic resistance</Keyword>
<Keyword MajorTopicYN="N">microbiome</Keyword>
<Keyword MajorTopicYN="N">plant disease</Keyword>
<Keyword MajorTopicYN="N">plant–pathogen interaction</Keyword>
</KeywordList>
<CoiStatement>None declared.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>03</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31380021</ArticleId>
<ArticleId IdType="doi">10.1002/ece3.5253</ArticleId>
<ArticleId IdType="pii">ECE35253</ArticleId>
<ArticleId IdType="pmc">PMC6662256</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Apr;143(3):449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15711822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1998 Feb;88(2):114-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2010 Aug;25(8):468-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20557974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Feb;25(2):139-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Feb;197(3):909-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23228058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jul;199(2):541-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23594373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:131-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23767846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Aug 16;341(6147):746-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(2):535-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24750093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2014 Jun;355(2):100-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24801140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2014 Dec;23(23):5888-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25243489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2015 Apr;18(4):401-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25728488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Jul 9;523(7559):137-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26156352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Mar;209(4):1681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26565565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Apr;90(6):645-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26646287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Jan;21(1):80-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26651920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2017 Mar 28;15(3):e2001793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28350798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2017 Oct;20(10):1285-1294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28868666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br Foreign Med Chir Rev. 1860 Apr;25(50):367-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30164232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2018 Nov 26;13(11):e0207839</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30475884</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Barbour, Matthew" sort="Barbour, Matthew" uniqKey="Barbour M" first="Matthew" last="Barbour">Matthew Barbour</name>
<name sortKey="Busby, Posy E" sort="Busby, Posy E" uniqKey="Busby P" first="Posy E" last="Busby">Posy E. Busby</name>
<name sortKey="Crutsinger, Gregory" sort="Crutsinger, Gregory" uniqKey="Crutsinger G" first="Gregory" last="Crutsinger">Gregory Crutsinger</name>
<name sortKey="Newcombe, George" sort="Newcombe, George" uniqKey="Newcombe G" first="George" last="Newcombe">George Newcombe</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarRustV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000011 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000011 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarRustV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31380021
   |texte=   Contingency rules for pathogen competition and antagonism in a genetically based, plant defense hierarchy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31380021" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarRustV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 27 22:23:40 2020. Site generation: Sun Jan 31 22:19:43 2021